MultiPathNet
A Torch implementation of the object detection network
MultiPathNet is a Torch-7 implementation of the “A MultiPath Network for Object Detection” paper (BMVC 2016), developed by Facebook AI Research. It extends the Fast R-CNN framework by introducing multiple network “paths” to enhance feature extraction and object recognition robustness. The MultiPath architecture incorporates skip connections and multi-scale processing to capture both fine-grained details and high-level context within a single detection pipeline. This results in improved detection accuracy across various object sizes and categories compared to standard single-path architectures. The repository supports training, evaluation, and visualization for object detection tasks on popular datasets such as PASCAL VOC and MS COCO. It provides pre-trained models for VGG, AlexNet, and ResNet backbones, along with integration for SharpMask and DeepMask proposal generators.